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Microscopic dynamics underlying anomalous diffusion
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The time-dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the
literature as the solution of a nonlinear Fokker-PlafféR) equationA.R. Plastino and A. Plastino, Physica A
222, 347 (1995]. The scope of the present paper is twofold. First, we show that this distribution can be
obtained also as a solution of the nonlinear porous media equation. Second, we prove that the time-dependent
Tsallis distribution can be obtained also as a solution of a linear FP eqy&idfaniadakis and P. Quarati,
Physica A237, 229(1997] with coefficients depending on the velocity, which describes a generalized Brown-
ian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard
Langevin equation in the presence of multiplicative noise.

PACS numbd(s): 05.30—~d, 03.65-w, 05.20:-y

[. INTRODUCTION librium solution of the FP equation. Within the linear ap-
proach, two different choices of the drift and diffusion
Recently, Tsallis thermostatistics has received considereoefficients have been proposed. Stariglpchooses a con-
able attention in light of its growing application to a variety stant diffusion coefficient and alters the drift coefficient to
of physical system$l]. The research has focused both oninclude a generalized potential depending on the Tsallis pa-
fundamental and phenomenological aspects of the {&8ue rameterq. This approach introduces a more relevant modifi-
Particular attention has been devoted to the issue ofation of the classic Brownian approach. In Héf, instead,
anomalous diffusion, where a significant amount of experithe classic Brownian drift coefficient has been considered,
mental evidence has been gathefsde Ref[3] for a de-  put with a modified diffusion coefficient to include a qua-
tailed bibliography. The description of a diffusive process dratic velocity dependence. The two linear approaches de-
(either classic or anomalouss performed generally by scribed above are in reality just examples of an infinite class
adopting a time-dependent formalism. The Tsallis distribuof linear FP models that give a Tsallis equilibrium distribu-

tion, namely tion [6]. Clearly, the selection of a specific linear model
1 among the class requires the introduction of other criteria
= [1—(1— 211(1-a) beyond the simple requirement of leading to an equilibrium

plv)=7 1=(1=a)kv] Tsallis distribution.

s 1

Second, nonlinear FP have been shown to lead to equilib-
with Z=[rdv[1-(1-q)Bv?]**" 9, has been first de- rium Tsallis distributions. This approach, introduced by Plas-
rived starting from the generalized entropy tino and Plasting7] and continued by various authdi%8—

13], introduces a diffusion coefficient depending on powers
1_] dv p? of the distribution function. The drift, instead, can be equal
R to zero or described as in the classic Brownian motion. This
latter approach, besides its elegance and simplicity, admits
using the maximum entropy principle under the constraint otime-dependent solutions characterized by retaining at every
conservation of particle number and energy, by solving thaime the form of a Tsallis distribution. This self-similarity of
variational problems(S;— BE—aN)=0. the evolution represent an important property of the nonlin-
Similarly to the classic Boltzmann distribution, the Tsallis ear approach.
distribution can be also obtained as the steady-state distribu- The present paper deals with the question of whether the
tion of a time-dependent Fokker-PlangkP) equation. Re- linear[5] and nonlineaf7] FP approaches to the derivation
cently, research on the derivation of the Tsallis distributionof the Tsallis distributions are equivalent. The answer proven
from FP equations has produced considerable re8#3$3.  here is that indeed the two approaches are equivalent, in the
The research in this area can be classified in one of twgense that they both allow the presence of self-similar tran-
classes. sients where the system is characterized by the Tsallis distri-
First, linear FP equations are considered with diffusionbution at every instant.
and drift coefficients depending on the velocity. The depen- In order to explain the microscopic origin of the anoma-
dence is chosen to lead to the Tsallis distribution as the equleus diffusion associated with the nonlinear FP equation of
Ref. [7], Borland suggested feedback from the macroscopic
level to the microscopic onEgL3]. In the present work, we
*Email address: kaniadakis@polito.it show that the nonlinear FP equation of H&f. as well as the
"Email address: lapenta@polito.it well-known nonlinear porous media equation, considered re-
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cently in the frame of Tsallis thermostatistics in Re], can J(t,v)=y(t)v, (7)
be recast in the equivalent linear FP equation of Ref.
This important result allows a deeper interpretation of the D(t,v)=c(t), (8)

nonlinear FP equation describing the anomalous diffusion in
terms of a linear Langevin microdynamics in the presence ofne drift current in Eq(4),
a multiplicative noise.

The present work is organized as follows. In Sec. Il, a aD(t,v)
generalized Brownian(GB) motion is derived from the Jarie=|J(t,v)+ p p(t,v), 9
Langevin equation in the presence of multiplicative noise. In v
Sec. Ill, the GB motion is shown to lead to a macroscopicIS simolified
motion described by the linear FP equation of R&j.that P '
admits as a solution a class of time-dependent Tsallis statis Jain=y(Dop(tv), (10)

tical distributions. In Secs. IV and V, the same distributions

IirF? Zhggt?o;ogfeg:%? ;tgltss tghoevirgriijn:zlasro %¥SE§ nmoe”d“igegﬁd the current velocityy,/ P becomes simply proportional
d y b to the viscous force- mh(t,v)=—my(t)v of the micro-

equation, respectively. Finally, in Sec. VI conclusions are .
drawn scopic process.

A problem arises in conjunction with the results just ob-
tained, namely whether other motions, besides the Brownian
motion, are characterized by a current velocity proportional
to the viscous force. This issue corresponds to the existence
We consider the microscopic process described by thef other solutions of the following equation for the unknown

1. GENERALIZED BROWNIAN MOTION

following Langevin equation: functionsD(t,v) andJ(t,v):
v(®) aD(t,v
g Thtw)=g(to)l), @ I(tw)+ ;v’ L awacte, (11
with . . . .
in addition to the solutiort7) and(8), relative to the Brown-
(T'(1))=0, (2)  ian motion. The issue is easily resolved and other solutions
can be found. The more general solution is formed by copies
(T(OT(t"))=268(t—t"). (3) of functionsJ(t,v) andD(t,v), whereD(t,v) is given by

The quantity—mh(t,v) is the deterministic force acting on a

particle of massn and velocityv (t) while mg(t,v)T'(t) is a D(tw)=c(t)+[o(t) — ”f J(v)dv, (12
stochastic force acting on the particle, witljt) a Gaussian

random variable with zero mean aidecorrelation function.  while J(t,v) remains arbitrary. The simplest solution, for
The presence aj(t,v) in Eq. (1) implies that the particle is  which J(t,v) is given by Eq.(7), provides the definition for
subject to a multiplicative noise. The distinction between ad-a new generalized BrowniaiB) motion [5].

ditive [wheng(t,v)=cons{ and multiplicative nois¢when

g(t,v)# consi is_ very significant Wherg(t,_v) is a time- _ IIl. LINEAR FOKKER-PLANCK EQUATION
dependent function. In this case, the question naturally arises
related to the definition of the stochastic inteditéd or Stra- We consider the FP equatigd) for the GB processes.

tonovich definition. For a more detailed discussion on mul- With the introduction of the dimensionless time
tiplicative noise, see Refl14]. The microscopic process de-
scribed by Eq(1) implies a macroscopic process described dr=6(t) y(t)dt, (13
by the following linear FP equation:

and the function®(7), B(7), and parametedq,

ap(t,v) @ dD(t,v)
n :5”J“’UH g0 |P(to) et

D(7)= =, (14

) 0t) ¥(1)

p(t,v)

+D(t,v) ], (4)
’ (1-q B =D (15
_ = ,
where the drift coefficientl(t,v) and the diffusion coeffi- q 2¢(t)

cientD(t,v) have the following expression: o o ) ) o )
the diffusion coefficien{12) with drift coefficient given by

J(t,v)=h(t,v), (5) Eq. (7) can be written in the following form:
D(t,v)=g(t,v)?, (6) D(7,0)=D(7)[1—(1-0q)B(7)v?], (16)

obtained using the Ito definition for the stochastic integralwhile after taking into account Eq7), the FP equatiort4)
Note that, for Brownian motion, becomeg5]:
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p(r,v) d p(7,0)=NgB(NY{1-(1-q)B(nv?]"*" 9, (27)
i o vp(7,v)+D(7)
where 8(7) is given by Eqs(22) and(23).
5. 9p(7,0)
X[1=(1=a)B(7v7] w | 17) IV. NONLINEAR FOKKER-PLANCK EQUATION

The scope of the present and the next sections is to show
that the time-dependent solutig27) obtained here of the
linear FP equatiori17) proposed in5] is also a solution of

1 nonlinear FP equations which can be obtained from the lin-
p(r,v)= Z—[l—(l—q),b’(r)vz]l’(lfq). (18 ear FP(17). The goal of the present section is to investigate
o(7) the relationship between the linear EFY) and the nonlinear

The above ansatz requires the solution to conserve at eveRy Vsquation Eroposefdbby Pla}stin% an(é PHSWEO

time the form of a Tsallis distribution with time-dependent € start the proof by noting that E¢27) allows us to
parameterZ, and 8. The time dependence of the two pa- V€

rameters determines the actual solution and is obtained easily 4 2_ Na-1 (q-1)12 1 q
substituting ansat&l8) in Eq. (17). It follows that the equa- 1=(A=q)B(1v"=Ng "B(7) p(rv)= 9. (28

tions determining the evolution &,(7) and3(r) are iden-  esjdes, the following time-dependent function is defined:
tical to the equations for the Brownian motion:

The time-dependent solutions of E47) are sought using
the following ansatz:

i
Zy(7) [B(O)]¥2 19 Dy(7) =5 g D(MB(n R, (29
Z4(0) [B(n)] ’
Then, it follows that Eq(17) can be rewritten as
dB(7)
—g. = 2B(n)—4D(1)B(7). (20 o(rv) @ P -
o _5 Up(T,U)+D1(T)%[p(T,U)] )
The result above justifies the use of the term generalized (30)
Brownian motion to name the process defined by Eds.
and(12). From Eq.(20) the condition below follows: which is identical to the equation proposed by Plastino and
Plastino that was solved using the same an$a®& used
2B(°)D(w)=1, (21) above but assuming that,(7) is constant.

o o . . _ The procedure outlined in the preceding section leads to
again in complete similarity with Browinan motion. Equa- the same relationshijp19) betweenzq(q-) and B(7), and

tion (20) is solved easily with the substitution=8"" that  g(7) is governed by the following evolution equation:
linearizes the equation

dB(r) _3, P1(7) _
LGN N “gr "2B(N)=2p() S B
= o0 —_ .
B(=B(=)| 1+| oy —1+a(n|ex—20)| -
(22)
The condition(21) transforms now as
with
NG~
2f7 D(n 5d . 2/%(00)‘3*‘*”2D1<oo)=2_q. (32
a(r)= .| D) exp(—27)dr. (23
As above, a transformatiog= 39732 linearizes Eq.
From Eq.(19) it follows that (31) and the general solution follows easily:
Z 1/2:Z 0 0 1/2:N . 24 0)](3—a)/2
o TVB(7)P=Z4(0)B(0)*=N, (24 B =g 1+ f;((o; by
The constantN, is determined starting from the expression -
; q-
of Z4(7) given by Xex;{(q—3)r]) , (33
+ oo
= —(1— 271(1-q)
2= dol1-(a-aBmeT0. @9 -0l Do
bq(r)=(3—q)fO D,(=) —1|exd(q—3)7]dr.
Forq=1 [15], it results ! (34)
N g+l /q-1I'(1/2+1/q-1)) 26 The complete solution of E¢30) is given by Eq.(27),
a2 T I'1/(g—1)) (26) where nowg(7) is expressed as a function bf,(7) by Egs.

(33) and (34). In the special case dD,(7) constant, the
The final solution of Eq(17) has the form results presented in the literati® 7] are recovered.
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V. NONLINEAR POROUS MEDIA EQUATION

For the solutions(27) considered above, the following

result follows readily:

()= N g @ 92 o P (@39
vPITY)=54-2) gy PO

Substituting the relationship above in Eg0), it follows that

ap(t,v) 7
P Dy e (39
where
NG~ 1
Da(7)= q_2B(T)(q‘”’z[E—B(T)D(T) . (37

As a consequence, E6) is the well known nonlinear po-
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which is solved readily to obtain
B(7)=p(0)| 1+2(q—2)(q—3)Ng°
T 2/(9-3)
% 80)° 92| D707 40
0

From Egs.(37) and(39) it follows thatD,(«)=0, a condi-
tion that guarantees that the curr¢88) vanishes forr— oo,
as needed to obtain an equilibrium state.

VI. CONCLUSIONS

In the present work, the same time-dependent Tsallis sta-
tistical distribution given in Eq(27) is a solution of all three
equations considered, E@L7), Eqg. (30), and Eq.(36), and

rous media equation, widely used in condensed-matter physlescribes anomalous diffusion. The time evolutioB6f) is

ics and considered recently in R¢8]. The current of par-
ticles is given by

. 14
J(T,v)=—Dz(T)g[IO(T,v)]z_q. (38)

which generalizes the Fick lajindeed, forg=1 the classic
Fick law is recovered

Clearly, the time-dependent Tsallis distributi@tB) is a
solution of Eq.(36) as well.Z4(7) and B(7) are connected
by Eq.(19) and the solution acquires the for(27) while the
evolution law forB( ) follows from D,(7). The final differ-
ential equation is

ds(r)
dr

=4(q—2)Ng D(1)B(7)E D2 (39

the same in all the cases considered and can be expressed in
terms of the three function®(7), D,(7), D,(7) that are
inter-related.

The relationships derived above allow us to interpret the
stateq27) at a microscopic level. Such states are solutions of
nonlinear FP equationfEgs. (30) and (36)] and conse-
quently describe anomalous diffusiéwhenq+1). But the
results obtained above prove that anomalous diffusion can
also be described with the linear FP equatidv, which has
a variable diffusion coefficient given by E(L6).

The primary result of this equivalence is that the linear FP
equation(17) can be related directly to the microscopic dy-
namic model expressed by the Langevin equatigrinking
in this way macroscopic processes described by anomalous
diffusion with microscopic processes characterized by mul-
tiplicative noise.
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