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Microscopic dynamics underlying anomalous diffusion
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The time-dependent Tsallis statistical distribution describing anomalous diffusion is usually obtained in the
literature as the solution of a nonlinear Fokker-Planck~FP! equation@A.R. Plastino and A. Plastino, Physica A
222, 347 ~1995!#. The scope of the present paper is twofold. First, we show that this distribution can be
obtained also as a solution of the nonlinear porous media equation. Second, we prove that the time-dependent
Tsallis distribution can be obtained also as a solution of a linear FP equation@G. Kaniadakis and P. Quarati,
Physica A237, 229~1997!# with coefficients depending on the velocity, which describes a generalized Brown-
ian motion. This linear FP equation is shown to arise from a microscopic dynamics governed by a standard
Langevin equation in the presence of multiplicative noise.

PACS number~s!: 05.30.2d, 03.65.2w, 05.20.2y
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I. INTRODUCTION

Recently, Tsallis thermostatistics has received consid
able attention in light of its growing application to a varie
of physical systems@1#. The research has focused both
fundamental and phenomenological aspects of the issue@2#.

Particular attention has been devoted to the issue
anomalous diffusion, where a significant amount of expe
mental evidence has been gathered~see Ref.@3# for a de-
tailed bibliography!. The description of a diffusive proces
~either classic or anomalous! is performed generally by
adopting a time-dependent formalism. The Tsallis distrib
tion, namely

p~v !5
1

Zq
@12~12q!bv2#1/(12q),

with Zq5*Rdv@12(12q)bv2#1/(12q), has been first de
rived starting from the generalized entropy

Sq5
1

q21 F12E
R

dv pqG ,
using the maximum entropy principle under the constrain
conservation of particle number and energy, by solving
variational problem:d(Sq2bE2aN)50.

Similarly to the classic Boltzmann distribution, the Tsal
distribution can be also obtained as the steady-state dist
tion of a time-dependent Fokker-Planck~FP! equation. Re-
cently, research on the derivation of the Tsallis distribut
from FP equations has produced considerable results@3–13#.
The research in this area can be classified in one of
classes.

First, linear FP equations are considered with diffus
and drift coefficients depending on the velocity. The dep
dence is chosen to lead to the Tsallis distribution as the e
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librium solution of the FP equation. Within the linear a
proach, two different choices of the drift and diffusio
coefficients have been proposed. Stariolo@4# chooses a con-
stant diffusion coefficient and alters the drift coefficient
include a generalized potential depending on the Tsallis
rameterq. This approach introduces a more relevant mod
cation of the classic Brownian approach. In Ref.@5#, instead,
the classic Brownian drift coefficient has been consider
but with a modified diffusion coefficient to include a qu
dratic velocity dependence. The two linear approaches
scribed above are in reality just examples of an infinite cl
of linear FP models that give a Tsallis equilibrium distrib
tion @6#. Clearly, the selection of a specific linear mod
among the class requires the introduction of other crite
beyond the simple requirement of leading to an equilibriu
Tsallis distribution.

Second, nonlinear FP have been shown to lead to equ
rium Tsallis distributions. This approach, introduced by Pl
tino and Plastino@7# and continued by various authors@3,8–
13#, introduces a diffusion coefficient depending on powe
of the distribution function. The drift, instead, can be equ
to zero or described as in the classic Brownian motion. T
latter approach, besides its elegance and simplicity, ad
time-dependent solutions characterized by retaining at ev
time the form of a Tsallis distribution. This self-similarity o
the evolution represent an important property of the non
ear approach.

The present paper deals with the question of whether
linear @5# and nonlinear@7# FP approaches to the derivatio
of the Tsallis distributions are equivalent. The answer prov
here is that indeed the two approaches are equivalent, in
sense that they both allow the presence of self-similar tr
sients where the system is characterized by the Tsallis di
bution at every instant.

In order to explain the microscopic origin of the anom
lous diffusion associated with the nonlinear FP equation
Ref. @7#, Borland suggested feedback from the macrosco
level to the microscopic one@13#. In the present work, we
show that the nonlinear FP equation of Ref.@7# as well as the
well-known nonlinear porous media equation, considered
3246 ©2000 The American Physical Society
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cently in the frame of Tsallis thermostatistics in Ref.@8#, can
be recast in the equivalent linear FP equation of Ref.@5#.
This important result allows a deeper interpretation of
nonlinear FP equation describing the anomalous diffusion
terms of a linear Langevin microdynamics in the presence
a multiplicative noise.

The present work is organized as follows. In Sec. II
generalized Brownian~GB! motion is derived from the
Langevin equation in the presence of multiplicative noise
Sec. III, the GB motion is shown to lead to a macrosco
motion described by the linear FP equation of Ref.@5# that
admits as a solution a class of time-dependent Tsallis st
tical distributions. In Secs. IV and V, the same distributio
are shown to represent states governed also by the nonl
FP equation of Ref.@7# and by the nonlinear porous med
equation, respectively. Finally, in Sec. VI conclusions a
drawn.

II. GENERALIZED BROWNIAN MOTION

We consider the microscopic process described by
following Langevin equation:

dv~ t !

dt
1h~ t,v !5g~ t,v !G~ t !, ~1!

with

^G~ t !&50, ~2!

^G~ t !G~ t8!&52d~ t2t8!. ~3!

The quantity2mh(t,v) is the deterministic force acting on
particle of massm and velocityv(t) while mg(t,v)G(t) is a
stochastic force acting on the particle, withG(t) a Gaussian
random variable with zero mean andd-correlation function.
The presence ofg(t,v) in Eq. ~1! implies that the particle is
subject to a multiplicative noise. The distinction between
ditive @wheng(t,v)5const# and multiplicative noise@when
g(t,v)Þconst# is very significant wheng(t,v) is a time-
dependent function. In this case, the question naturally ar
related to the definition of the stochastic integral~Ito or Stra-
tonovich definition!. For a more detailed discussion on mu
tiplicative noise, see Ref.@14#. The microscopic process de
scribed by Eq.~1! implies a macroscopic process describ
by the following linear FP equation:

]p~ t,v !

]t
5

]

]v H FJ~ t,v !1
]D~ t,v !

]v Gp~ t,v !

1D~ t,v !
]p~ t,v !

]v J , ~4!

where the drift coefficientJ(t,v) and the diffusion coeffi-
cient D(t,v) have the following expression:

J~ t,v !5h~ t,v !, ~5!

D~ t,v !5g~ t,v !2, ~6!

obtained using the Ito definition for the stochastic integr
Note that, for Brownian motion,
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J~ t,v !5g~ t !v, ~7!

D~ t,v !5c~ t !, ~8!

the drift current in Eq.~4!,

j drift5FJ~ t,v !1
]D~ t,v !

]v Gp~ t,v !, ~9!

is simplified,

j drift5g~ t !vp~ t,v !, ~10!

and the current velocityj drift/P becomes simply proportiona
to the viscous force2mh(t,v)52mg(t)v of the micro-
scopic process.

A problem arises in conjunction with the results just o
tained, namely whether other motions, besides the Brown
motion, are characterized by a current velocity proportio
to the viscous force. This issue corresponds to the existe
of other solutions of the following equation for the unknow
functionsD(t,v) andJ(t,v):

J~ t,v !1
]D~ t,v !

]v
5u~ t !J~ t,v !, ~11!

in addition to the solution~7! and~8!, relative to the Brown-
ian motion. The issue is easily resolved and other soluti
can be found. The more general solution is formed by cop
of functionsJ(t,v) andD(t,v), whereD(t,v) is given by

D~ t,v !5c~ t !1@u~ t !21#E J~v !dv, ~12!

while J(t,v) remains arbitrary. The simplest solution, fo
which J(t,v) is given by Eq.~7!, provides the definition for
a new generalized Brownian~GB! motion @5#.

III. LINEAR FOKKER-PLANCK EQUATION

We consider the FP equation~4! for the GB processes
With the introduction of the dimensionless timet :

dt5u~ t !g~ t !dt, ~13!

and the functionsD(t), b(t), and parameterq,

D~t!5
c~ t !

u~ t !g~ t !
, ~14!

~12q!b~t!5
12u~ t !

2c~ t !
, ~15!

the diffusion coefficient~12! with drift coefficient given by
Eq. ~7! can be written in the following form:

D~t,v !5D~t!@12~12q!b~t!v2#, ~16!

while after taking into account Eq.~7!, the FP equation~4!
becomes@5#:
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]p~t,v !

]t
5

]

]v H vp~t,v !1D~t!

3@12~12q!b~t!v2#
]p~t,v !

]v J . ~17!

The time-dependent solutions of Eq.~17! are sought using
the following ansatz:

p~t,v !5
1

Zq~t!
@12~12q!b~t!v2#1/(12q). ~18!

The above ansatz requires the solution to conserve at e
time the form of a Tsallis distribution with time-depende
parametersZq and b. The time dependence of the two p
rameters determines the actual solution and is obtained e
substituting ansatz~18! in Eq. ~17!. It follows that the equa-
tions determining the evolution ofZq(t) andb(t) are iden-
tical to the equations for the Brownian motion:

Zq~t!

Zq~0!
5Fb~0!

b~t! G
1/2

, ~19!

db~t!

dt
52b~t!24D~t!b~t!2. ~20!

The result above justifies the use of the term generali
Brownian motion to name the process defined by Eqs.~7!
and ~12!. From Eq.~20! the condition below follows:

2b~`!D~`!51, ~21!

again in complete similarity with Browinan motion. Equ
tion ~20! is solved easily with the substitutiony5b21 that
linearizes the equation

b~t!5b~`!H 11Fb~`!

b~0!
211a~t!Gexp~22t!J 21

,

~22!

with

a~t!52E
0

tF D~t!

D~`!
21Gexp~22t!dt. ~23!

From Eq.~19! it follows that

Zq~t!b~t!1/25Zq~0!b~0!1/25Nq . ~24!

The constantNq is determined starting from the expressi
of Zq(t) given by

Zq~t!5E
2`

1`

dv@12~12q!b~t!v2#1/(12q). ~25!

For q>1 @15#, it results

Nq5
q11

2
Aq21

p

G„1/211/~q21!…

G„1/~q21!…
. ~26!

The final solution of Eq.~17! has the form
ry

ily

d

p~t,v !5Nqb~t!1/2@12~12q!b~t!v2#1/(12q), ~27!

whereb(t) is given by Eqs.~22! and ~23!.

IV. NONLINEAR FOKKER-PLANCK EQUATION

The scope of the present and the next sections is to s
that the time-dependent solution~27! obtained here of the
linear FP equation~17! proposed in@5# is also a solution of
nonlinear FP equations which can be obtained from the
ear FP~17!. The goal of the present section is to investiga
the relationship between the linear FP~17! and the nonlinear
FP equation proposed by Plastino and Plastino@7#.

We start the proof by noting that Eq.~27! allows us to
write

12~12q!b~t!v25Nq
q21b~t!(q21)/2p~t,v !12q. ~28!

Besides, the following time-dependent function is defined

D1~t!5
Nq

q21

22q
D~t!b~t!(q21)/2. ~29!

Then, it follows that Eq.~17! can be rewritten as

]p~t,v !

]t
5

]

]v H vp~t,v !1D1~t!
]

]v
@p~t,v !#22qJ ,

~30!

which is identical to the equation proposed by Plastino a
Plastino that was solved using the same ansatz~18! used
above but assuming thatD1(t) is constant.

The procedure outlined in the preceding section leads
the same relationship~19! betweenZq(t) and b(t), and
b(t) is governed by the following evolution equation:

db~t!

dt
52b~t!22b~`!(q23)/2

D1~t!

D1~`!
b~t!(52q)/2.

~31!

The condition~21! transforms now as

2b~`!(32q)/2D1~`!5
Nq

q21

22q
. ~32!

As above, a transformationy5b (q23)/2 linearizes Eq.
~31! and the general solution follows easily:

b~t!5b~`!S 11H Fb~`!

b~0! G
(32q)/2

211bq~t!J
3exp@~q23!t# D 2/(q23)

, ~33!

bq~t!5~32q!E
0

[(32q)t]/2F D1~t!

D1~`!
21Gexp@~q23!t#dt.

~34!

The complete solution of Eq.~30! is given by Eq.~27!,
where nowb(t) is expressed as a function ofD1(t) by Eqs.
~33! and ~34!. In the special case ofD1(t) constant, the
results presented in the literature@3,7# are recovered.



g

-
hy

sta-

ed in

the
of

can

FP
y-

lous
ul-

PRE 62 3249MICROSCOPIC DYNAMICS UNDERLYING ANOMALOUS . . .
V. NONLINEAR POROUS MEDIA EQUATION

For the solutions~27! considered above, the followin
result follows readily:

vp~t,v !5
Nq

q21

2~q22!
b~t!(q23)/2

]

]v
@p~t,v !#22q. ~35!

Substituting the relationship above in Eq.~30!, it follows that

]p~t,v !

]t
5D2~t!

]2

]v2
@p~t,v !#22q, ~36!

where

D2~t!5
Nq

q21

q22
b~t!(q23)/2F1

2
2b~t!D~t!G . ~37!

As a consequence, Eq.~36! is the well known nonlinear po
rous media equation, widely used in condensed-matter p
ics and considered recently in Ref.@8#. The current of par-
ticles is given by

j ~t,v !52D2~t!
]

]v
@p~t,v !#22q, ~38!

which generalizes the Fick law~indeed, forq51 the classic
Fick law is recovered!.

Clearly, the time-dependent Tsallis distribution~18! is a
solution of Eq.~36! as well.Zq(t) andb(t) are connected
by Eq.~19! and the solution acquires the form~27! while the
evolution law forb(t) follows from D2(t). The final differ-
ential equation is

db~t!

dt
54~q22!Nq

12qD2~t!b~t!(52q)/2, ~39!
b

s-

which is solved readily to obtain

b~t!5b~0!F112~q22!~q23!Nq
12q

3b~0!(32q)/2E
0

t

D2~t!dtG2/(q23)

. ~40!

From Eqs.~37! and ~39! it follows that D2(`)50, a condi-
tion that guarantees that the current~38! vanishes fort→`,
as needed to obtain an equilibrium state.

VI. CONCLUSIONS

In the present work, the same time-dependent Tsallis
tistical distribution given in Eq.~27! is a solution of all three
equations considered, Eq.~17!, Eq. ~30!, and Eq.~36!, and
describes anomalous diffusion. The time evolution ofb(t) is
the same in all the cases considered and can be express
terms of the three functionsD(t), D1(t), D2(t) that are
inter-related.

The relationships derived above allow us to interpret
states~27! at a microscopic level. Such states are solutions
nonlinear FP equations@Eqs. ~30! and ~36!# and conse-
quently describe anomalous diffusion~whenqÞ1). But the
results obtained above prove that anomalous diffusion
also be described with the linear FP equation~17!, which has
a variable diffusion coefficient given by Eq.~16!.

The primary result of this equivalence is that the linear
equation~17! can be related directly to the microscopic d
namic model expressed by the Langevin equation~1! linking
in this way macroscopic processes described by anoma
diffusion with microscopic processes characterized by m
tiplicative noise.
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